134 research outputs found

    Control of interlayer exchange coupling in Fe/Cr/Fe trilayers by ion beam irradiation

    Full text link
    The manipulation of the antiferromagnetic interlayer coupling in the epitaxial Fe/Cr/Fe(001) trilayer system by moderate 5 keV He ion beam irradiation has been investigated experimentally. It is shown that even for irradiation with very low fluences (10^14 ions/cm^2) a drastic change in strength of the coupling appears. For thin Cr-spacers (below 0.6 - 0.7 nm) the coupling strength decreases with fluence, becoming ferromagnetic for fluences above (2x10^14 ions/cm^2). The effect is connected with the creation of magnetic bridges in the layered system due to atomic exchange events caused by the bombardment. For thicker Cr spacers (0.8 - 1.2 nm) an enhancement of the antiferromagnetic coupling strength is found. A possible explanation of the enhancement effect is given.Comment: Submitted to PR

    Vacancy complexes in nonequilibrium germanium-tin semiconductors

    Full text link
    Understanding the nature and behavior of vacancy-like defects in epitaxial GeSn metastable alloys is crucial to elucidate the structural and optoelectronic properties of these emerging semiconductors. The formation of vacancies and their complexes is expected to be promoted by the relatively low substrate temperature required for the epitaxial growth of GeSn layers with Sn contents significantly above the equilibrium solubility of 1 at.%. These defects can impact both the microstructure and charge carrier lifetime. Herein, to identify the vacancy-related complexes and probe their evolution as a function of Sn content, depth-profiled pulsed low-energy positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy were combined to investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range. The samples were grown by chemical vapor deposition method at temperatures between 300 and 330 {\deg}C. Regardless of the Sn content, all GeSn samples showed the same depth-dependent increase in the positron annihilation line broadening parameters, which confirmed the presence of open volume defects. The measured average positron lifetimes were the highest (380-395 ps) in the region near the surface and monotonically decrease across the analyzed thickness, but remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps higher than the Ge reference layers. Surprisingly, these lifetimes were found to decrease as Sn content increases in GeSn layers. These measurements indicate that divacancies are the dominant defect in the as-grown GeSn layers. However, their corresponding lifetime was found to be shorter than in epitaxial Ge thus suggesting that the presence of Sn may alter the structure of divacancies. Additionally, GeSn layers were found to also contain a small fraction of vacancy clusters, which become less important as Sn content increases
    • …
    corecore